NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. RIEMANN INTEGRALS

Notation 1.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a,b]. Andm < f <

M.
(ii) : P:a=u1z9 <z < .. <uzp=> denotes a partition on [a,b]; Azx; = x; — x;—1 and
||| = max Az;.

(iii) : M;(f,P) = sup{f(z) : v € [wi—1,zi}; mi(f,P) = inf{f(z) : v € [xi_1,2z:}. And
wl(fa ﬂj) = Ml(fa ﬂj) - ml(fv 9))

() : U(f,P):=> M;(f,P)Ax;; L(f,P) := > mi(f,P)Ax;.

(v) : R(f,PA&Y) =30 f(&)Azi, where & € [mi—1, 23]

(vi) : Rla,b] is the class of all Riemann integral functions on [a,b].

Definition 1.2. We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P|| —
0 if for any € > 0, there is § > 0 such that

[A=R(f, P, &)l <e
for any & € [zi—1, ;] whenever ||P]| < 4.

Theorem 1.3. f € Rla,b] if and only if for any ¢ > 0, there is a partition P such that

Lemma 1.4. f € R[a,b] if and only if for any e > 0, there is 6 > 0 such that U(f,P)—L(f,P) <
e whenever ||P|| < 0.

Proof. The converse follows from Theorem 1.3.

Assume that f is integrable over [a,b]. Let & > 0. Then there is a partition Q : a = yp <
.. <y =bon [a,b] such that U(f,Q) — L(f,Q) < . Now take 0 < § < ¢/l. Suppose that
Pra=xy<..<x,=>bwith |P|]| <. Then we have

U(f,P)—L(f,P)=1+1I
where
I = Z wi(f, fP)ALUZ,
2:QN(zi—1,7;)=0
and
QN (xi—1,2;)#£0
Notice that we have
I< U(f,Q) _L(f7Q) <e
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and
IT < (M —m) o An<(M-m)-l-
QN (i —1,@:)#0
The proof is finished. U

Theorem 1.5. f € R[a,b] if and only if the Riemann sum R(f, P, {&}) is convergent. In this
b
case, R(f,P,{&}) converges to / f(z)dz as ||P|| — 0.

7= (M —m)e.

Proof. For the proof (=) : we first note that we always have

and )
L(f.P) < / f(@)de < U(f,P)

for any & € [x;—1,x;] and for all partition P.
Now let € > 0. Lemma 1.4 gives § > 0 such that U(f,P) — L(f,P) < e as ||P|| < J. Then we
have

b
| / f@)dz — R(f,P.{&))| < e

b
as ||P|| < 6. The necessary part is proved and R(f, P, {&}) converges to / f(z)dz.

For (<) : there exists a number A such that for any € > 0, there is § > 0,awe have
A_€<:R(faipv{£l}) <A+e

for any partition P with ||P|| < d and & € [z;—1, x;].
Now fix a partition P with ||P|| < §. Then for each [z;_1,x;], choose & € [x;—1,x;] such that
M;(f,P) —e < f(&). This implies that we have

U(f,P)—eb—a) <R(f,P,{&}) <A+e.

So we have shown that for any € > 0, there is a partition P such that

T b
(1.1) / f@)de < U(f,P) < A+2(1+b—a).

By considering — f, note that the Riemann sum of — f will converge to —A. The inequality 1.1
will imply that for any € > 0, there is a partition P such that

A—5(1+b—a)S/bf(x)dxg/bf(x)dang—}—e(l—f—b—a).

The proof is finished. O
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Theorem 1.6. Let f € Rlc,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C' function
with f(a) = ¢ and f(b) =

Then f o ¢ € Ra,b], moreover, we have

d b
/ f(@)dz = / (o) (t)dt

Proof. Let A = fcd f(x)dx. By Theorem 1.5, we need to show that for all £ > 0, there is § > 0
such that

A= F(0(&)d (&) At| < €

for all & € [tx—1,tx] whenever Q :a =ty < ... < t,, = b with ||Q| < §.
Now let € > 0. Then by Lemma 1.4 and Theorem 1.5, there is d; > 0 such that

(1.2) A= flm) Dy < e
and
(1.3) > w(f,P) Ay < e

for all ny € [xg_1,zx] whenever P:c =1z < ... <z, = d with ||P| < ;.

Now put z = ¢(t) for t € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is § > 0 such that |¢(t) — ¢(t')] < §; and
|9/ (t) — ¢'(t')| < e for all t,t" infa,b] with |t —t'| < 4.

Now let Q:a =ty < ... < ty, = b with [|Q]] < §. If we put z = ¢(tg), then P:c =129 < .... <
Zm = d is a partition on [c,d] with ||P|| < &1 because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [ty_1,tx], there is & € (t5_1,t) such
that

Azy, = ¢(tg) — d(tp—1) = @' (&) Aty
This yields that

(1.4) |Azy, — ¢ () Dty| < eDty

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of 4.
Now for any & € [tix—1, tx], we have

|A =" F(0(&R) (&r) Ati| < |A - Zf ¢ (&) Dt
(1.5) H) OGN (G At — > F(D(E))D (&) At

+1) f(<z><£;:>>¢’<5k>mk = F($(&)9 (&) Aty
Notice that inequality 1.2 implies that

[A =" F(AEN (&) Dt] = A= F(d(&)) Aax| <e.

Also, since we have |¢'(&) — qﬁ’(§k ] <e¢eforall k=1,..,m, we have

1D FENG () At = > F(B(€0)0 (&) Aty < M(b—a)e

where |f(x)| < M for all z € [¢,d].
On the other hand, by using inequality 1.4 we have

|§' (€3) Aty| < Dz + eAty,
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for all k. This, together with inequality 1.3 imply that

)" FB(E0)0 (&) At — D F(6(€r)) S (&) Aty
<Y Wk, P () ALk] (2 D(ER), B(E) € [wr1, zk])
<Y Wil P)(Awg + eAt)
<e+2M(b—a).
Finally by inequality 1.5, we have
A= F(8(6))d () Aty < &+ M(b— a)e + &+ 2M (b — a)e.
The proof is finished. ]
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